Comment expliquer cette réalité au plus grand nombre?

Nous sommes la cause des Changements Climatiques, soyons la solution.
Merci de partager nos articles, ils sont écrits dans le seul but d'informer.

Translate/Traduire

Aucun message portant le libellé Atlantique. Refroidissement. Afficher tous les messages
Aucun message portant le libellé Atlantique. Refroidissement. Afficher tous les messages

vendredi 26 janvier 2018

Le courant-jet a perdu le Nord et on en a des preuves en Europe

La météo extrême étroitement liée aux fluctuations du courant-jet

On observe de plus en plus d'événements météo extrêmes en Europe (et partout ailleurs). Il est normal dans le contexte du réchauffement climatique actuel que le  courant-jet, principal moteur météo et qui propulse d’une façon générale les systèmes météo d’Ouest en Est dans notre hémisphère soit de plus en plus variable.
Introduction
Le courant-jet (rivière d'air qui circule au-dessus de l'hémisphère Nord à environ 10km d'altitude) ralentit à cause du réchauffement climatique et cela lui fait faire des ondulations Nord-Sud nommées ondes de Rossby de plus en plus amplifiées.

Dans certaines conditions, selon leur nombre en fait, les ondes de Rossby se bloquent en place et les systèmes météo associés font alors du sur-place, parfois pour de longues périodes, et c'est ce qui explique, en partie, certaines sécheresses ou des périodes de pluie prolongées, ou encore, ce qui explique aussi que plusieurs tempêtes de suite suivent plus ou moins la même trajectoire. Je me rappelle l'hiver 2013-2014 au cours de laquelle cinq des plus fortes tempêtes de l'histoire du Royaume-Uni y ont déferlé et de la sécheresse au Portugal )été 2017) qui a causé des feux de forêts extrêmes pour ne citer que deux exemples qui me viennent en mémoire.

Mais la météo peut aussi passer rapidement d'un extrême à l'autre, comme de sécheresses à pluie diluviennes en peu de temps, surtout à la périphérie du courant-jet.

Les événements météo extrêmes ont des répercussions importantes sur l'agriculture. C'est sans doute l'impact le plus important du réchauffement climatique.
  • Cette animation montre l'accroissement de la variabilité du courant-jet et le développement d'ondulations Nord-Sud (ondes de Rossby) suite au réchauffement climatique.

 ______________________________

Des données sur le courant-jet remontant à 1725

La nouvelle étude est la première reconstruction historique de la trajectoire du courant-jet sur ces régions qui remonte à avant le 20e siècle. Les anneaux de croissances des arbres sont encore venus au secours des chercheurs car ils sont des témoins fiables du passé et ils ont raconté leur histoire qui remonte jusqu’en 1725.

On voit dans cette étude que depuis environ 1960, des fluctuations croissantes de la trajectoire du courant-jet dans la portion de l’Atlantique Nord coïncident avec des événements météo extrêmes en Europe, tels canicules ou même sécheresses, tempêtes et inondations.


La partie de l'anneau de croissance annuelle qui se forme vers la fin de la saison de croissance se nomme "bois final". La densité du "bois final" reflète les températures au mois d'août de l'année où la croissance a eu lieu.
  • Résumé graphique : Cinq renseignements que peuvent fournir les anneaux de croissance des arbres
Ressources naturelles Canada
La Dre. Valerie Trouet, auteure principale de l’étude dit : « Nous avons découvert que la position du courant-jet au-dessus de l’Atlantique Nord durant l’été a été la cause principale d’extrêmes climatiques en Europe depuis près de 300 ans ».

Ayant 290 ans de données relatant la position du courant-jet, Mme Trouet et ses collègues ont déterminé que les ondulations Nord/Sud de la trajectoire du courant-jet sont devenues plus fréquentes depuis la deuxième moitié du 20e siècle.

"Depuis 1960, il y a eu plus d'années au cours desquelles le courant-jet s'est trouvé dans une position extrême. Quand la portion Atlantique-Nord du courant-jet se retrouve dans une positon très au Nord, les Îles Britannique et l'Ouest de l'Europe subissent une vague de chaleur alors que le sud-est de l'Europe essuie de fortes pluies déclenchant des inondations" ajoute la Dre. Trouet.

Lorsque le courant-jet est dans une position extrême Sud, la situation s'inverse : l'Ouest de l'Europe reçoit des pluies anormalement intenses alors que le sud-est de l'Europe se retrouve avec des températures trop chaudes causant sécheresses et feux de forêts.
Le Nord est en haut, l'Ouest à gauche et l'Est à droite :-)
Les canicules, les sécheresses et les inondations affectent les populations" dit la Dre. Trouet. "Ces vagues de chaleur et ces sécheresses se produisent en plus du réchauffement climatique ; c'est un coup double".

Les événements météo extrêmes en été sur le centre-Ouest Américain (et les autres régions) sont eux aussi associés à des trajectoires anormales trop au Nord ou trop au Sud du courant-jet écrivent les auteurs.

NDT On parle des ondulations Nord-Sud (ondes de Rossby) de plus en plus fortes quand on parle de positions ou de trajectoires du courant-jet.

Le froid extrême et les fortes chutes de neige au cours de cet hiver (2015) sur les Nord-Est de l'Amérique et la chaleur extrême causant une forte sécheresse en Californie où il y a eu un autre nouveau record d'incendies de forêts et broussailles sont aussi liés à la trajectoire anormale du courant-jet au cours de l'hiver. dit-elle.

L'étude. "Recent enhanced high-summer North Atlantic Jet variability emerges from three-century context," (la variabilité accrue du courant-jet au-dessus de l'Atlantique Nord au plus fort de l'été émerge d'un contexte de trois siècles) par Mme. Trouet l'auteure principale) et M. Meko de l'Université d'Arizona et F. Babst de Institut fédéral (Suisse) de recherches WSL. La recherche est parue dans le journal "Nature Communications" le 12 janvier 2017

Lors d'une visite en Belgique chez sa famille au cours du pluvieux été de 2012, Valerie Trouet a jeté un coup d'oeil à la carte météo qui montrait de fortes pluies sur le Nord-Ouest de l'Europe et chaleur extrême et sécheresse sur le Nord-Est de la Méditerranée. "J'avais vu exactement la même carte avec mes données des anneaux de croissance des arbres, dit-elle. Les anneaux de croissance des arbres révélaient que des températures plus chaudes près de la Méditerranée se produisaient au même moment où le temps était frais sur les Îles Britanniques, et vice-versa.

D'autres chercheurs avaient mesuré la densité du "bois final" d'arbres des Îles Britanniques et de la région Nord-Est de la Méditerranée pour des anneaux de croissance formées de 1978 jusqu'en 1725.
Credit: © JLV Image Works / Fotolia
De nos jours, on fait du carotte d'arbres pour lire les anneaux de croissance ; plus besoin de couper les arbres. Source CNRS
Parce que la température en août des ces deux régions montre la position estivale dur courant-jet, Mme Trouet et ses collègues ont utilisé les données fournies par les anneaux de croissance pour déterminer la position du courant-jet au cours de chacune de ces années. Pour ce qui est de la position du courant-jet de 1979 à ce jour, ils ont utilisé les données des observations météo.

Il y avait un débat à savoir si la variabilité du courant-jet était due au réchauffement climatique parce que les données d'observations (satellitaires) ne remontaient qu'à 1979, une période jugée trop courte pour pointer "statistiquement" du doigt le réchauffement climatique. Cette étude démontre que la variabilité du courant-jet s'est particulièrement accrue depuis 1960.

Avec la découverte d'arbres beaucoup plus vieux dans les Balkans et sur les Îles Britanniques afin de reconstruire la position du courant-jet jusqu'à mille ans dans le passé. Valerie Trouet espère aussi reconstruire la trajectoire du courant-jet sur le Nord du Pacifique qui influence le climat et la météo en Amérique du Nord.

______________________________


Article source en Anglais
https://www.sciencedaily.com/releases/2018/01/180112091209.htm


Articles connexes :
Comment expliquer l'amplification Arctique? Ça peut vous surprendre

Le Vortex Polaire vu de près : ou pourquoi fait-il si froid sur une grande partie de l'Amérique

samedi 25 février 2017

Un risque de refroidissement rapide dans l’Atlantique Nord

Merci à global-climat pour son accord a republié son excellent articles sur ce blogue. Visitez le souvent, il regorge d'excellent articles.


Une nouvelle étude publiée dans Nature Communications alerte sur le risque de voir un refroidissement important dans l’Atlantique Nord. Pour la première fois, des chercheurs se sont focalisés sur les conséquences d’une réduction brutale de la convection océanique dans une région clé, la Mer du Labrador. Leur conclusion : même sans un effondrement de la circulation thermohaline dans son ensemble, l’Atlantique Nord pourrait connaître un sérieux coup de froid.


Une équipe d’océanographes du laboratoire Environnements et paléoenvironnements océaniques et continentaux (CNRS/Université de Bordeaux) et de l’Université de Southampton vient d’évaluer pour la première fois le risque d’un refroidissement rapide dans l’Atlantique du Nord en relation avec un effondrement de la convection océanique dans la Mer du Labrador. Leurs résultats sont publiés dans Nature Communications.


La Mer du Labrador, au sud-ouest du Groenland, est une des régions de convection de l’Atlantique Nord où la formation d’eau profonde alimente un système de courants à grande échelle, la circulation océanique méridienne de retournement Atlantique, autrement connue comme AMOC ou circulation thermohaline. Avec l’AMOC, les courants océaniques en surface apportent les eaux subtropicales chaudes vers l’Atlantique Nord où, leur refroidissement les fait plonger en profondeur dans les régions de convection. 

Ils  retournent ainsi vers sud.  Ce système est donc responsable d’un transport de chaleur nette vers l’Atlantique du Nord.

Représentation schématique de la circulation dans la mer du Labrador, au cœur du gyre subpolaire schématisé par le contour rouge. Crédit : Giovanni Sgubin – EPOC.
Représentation schématique de la circulation dans la mer du Labrador, au cœur du gyre subpolaire schématisé par le contour rouge. Crédit : Giovanni Sgubin – EPOC.

A plusieurs reprises, depuis la fin de la dernière glaciation, il y a 20 000 ans, l’AMOC s’est déjà effondrée de façon brutale – en l’espace d’une décade ! – ramenant le climat à des conditions glaciaires en Europe. Dans les conditions climatiques actuelles, on estime qu’une interruption brutale de l’AMOC produirait une baisse de 5°C de la température dans l’Atlantique du Nord.


Le rapport du GIEC, le Groupe d’experts intergouvernemental sur l’évolution du climat, estime qu’il y a de fortes chances pour que l’AMOC ralentisse au cours du XXIe siècle, mais cela serait très progressif. Un arrêt complet, qui entraînerait une chute rapide de la température de l’Atlantique du Nord, n’aurait que de très faibles chances de se produire au cours du siècle.


Les auteurs de l’article publiés dans Nature Communications ont réexaminé une quarantaine de modèles climatiques de dernière génération (CMIP5) en se concentrant sur la possibilité d’une interruption de la convection dans la Mer du Labrador. « Un arrêt de la convection océanique dans la Mer du Labrador n’aurait pas les mêmes effets catastrophiques qu’une interruption de la circulation thermohaline, mais cela peut avoir un impact important sur les évolutions des températures en Europe de l’ouest et dans l’est de l’Amérique », précise d’abord Giovanni Sgubin, l’auteur principal de l’étude.


« La convection dans la mer du Labrador alimente l’AMOC, mais elle contribue seulement de façon partielle au flux total de l’AMOC », continue Giovanni Sgubin. « Donc, si une interruption de la convection dans le Labrador se déclenche, l’AMOC ne va pas forcement s’interrompre ». Cela a incité les chercheurs à évaluer la possibilité d’un refroidissement dans l’Atlantique du Nord en raison de changements locaux dans la Mer du Labrador plutôt que en raison de changements à grande échelle de l’AMOC.

Circulation océanique thermohaline montrant la remontée d'eau chaude (en rouge) vers les hautes latitudes et le plongeon des eaux froides et salées (en bleu) qui reviennent vers le sud pour former une boucle (source : Wikipedia)
Circulation océanique thermohaline montrant la remontée d’eau chaude (en rouge) vers les hautes latitudes et le plongeon des eaux froides et salées (en bleu) qui reviennent vers le sud pour former une boucle (source : Wikipedia)


Normalement, avec la convection, une masse d’eau froide et dense s’enfonce dans l’océan grâce à un mélange entre eaux superficielles et eaux des profondeurs, qui provoque un flux de chaleur nette vers l’atmosphère. Il y a deux ingrédients nécessaires pour déclencher la convection dans le Labrador : des températures de l’atmosphère très froides (en hiver), et une stratification faible. La stratification mesure les variations verticales de la densité de l’eau.

Si une couche plus profonde est plus dense que la couche juste au-dessus, il y a une condition de stratification stable qui entrave le mouvement entre les deux couches et l’échange de chaleur vertical. Le changement climatique pourrait conduire à des conditions de stratification trop élevées dans la mer du Labrador pour pouvoir activer le mélange entre eaux superficielles et eaux des profondeurs en hiver et donc le phénomène de convection.


Parmi le 40 modèles climatiques étudiés, 17,5% projettent un arrêt complet de la convection dans cette région, avec comme résultat un refroidissement abrupt  (2 ou 3 degrés en moins de dix ans) de la mer du Labrador et de fortes baisses des températures dans les régions côtières de l’Atlantique Nord. Ce refroidissement lié à l’interruption de la convection est donc principalement le résultat d’une diminution drastique des échanges de chaleur entre les couches profondes de l’océan et l’atmosphère dans la région du Labrador.


Ce résultat pourrait apparaître de prime abord comme plutôt rassurant, vu que la plupart des modèles ne reproduisent pas un tel événement abrupt. Mais les chercheurs ont noté que tous les modèles ne sont pas capables de reproduire de façon réaliste la stratification dans la mer du Labrador, une variable clé pour la reproduction correcte des mécanismes de convection. Pour cette raison, ils se sont penchés sur les 11 modèles les plus capables de simuler la stratification observée. Parmi ces modèles, 45,5% montrent un effondrement des processus de mélange vertical profond dans la Mer du Labrador au cours du XXI siècle. Des processus qui se produisent normalement en hiver. En tenant compte de la fiabilité des modèles, le risque d’un refroidissement brusque en mer du Labrador apparaît donc bien plus élevé que ce qui prévu dans l’ensemble CMIP5.


Toutes les simulations reproduisant une interruption de la convection dans le Labrador, montrent qu’une diminution de salinité est le processus dominant dans le déclenchement de cet événement. Cela cause une augmentation de la stratification et l’interruption de la convection. En raison du réchauffement climatique, certains scientifiques craignent que la fonte des glaces du Groenland rejette suffisamment d’eau douce dans l’Atlantique Nord pour bouleverser la circulation océanique. Mais ce mécanisme n’a pas été pris en compte dans l’étude parue dans Nature Communications. 

Dans les modèles étudiés par Giovanni Sgubin et ses coauteurs, la diminution de la salinité dans la mer du Labrador est liée à deux phénomènes favorisés par le réchauffement climatique global : l’accélération du cycle hydrologique avec une augmentation des précipitations dans la Mer du Labrador et une changement de circulation océanique, dont une ralentissement du gyre subpolaire, c’est-à-dire de la circulation cyclonique horizontale caractérisant la Mer du Labrador.

Exemple d'un refroidissement rapide dans le gyre prédit par l'une des projections climatiques. A gauche : évolution temporelle de la température de surface de la mer. A droite : écarte entre la température de l'air à la surface de la mer, entre le début et la fin du XXIe siècle. Crédit : Giovanni Sgubin – EPOC.
Exemple d’un refroidissement rapide dans le gyre prédit par l’une des projections climatiques.
A gauche : évolution temporelle de la température de surface de la mer.
A droite : écarte entre la température de l’air à la surface de la mer, entre le début et la fin du XXIe siècle. Crédit : Giovanni Sgubin – EPOC.


Les modèles climatiques, en fait, ne simulent pas l’afflux d’eau douce issue des calottes et des glaciers. L’apport d’eau douce dans l’océan dû à la fonte des glaces du Groenland n’a donc pas pu être considéré. Mais les auteurs de l’étude ne sous-estiment pas son influence. « Vu que la diminution de salinité semble être une composante clé pour produire une interruption de la convection dans les modèles, l’apport d’eau douce du Groenland peut être une élément de plus augmentant la probabilité que cet événement abrupt se produise », précise Giovanni Sgubin.

L’un des défis de la prochaine génération de modèles climatiques est de tenir compte de ce processus. La fonte du Groenland risque donc de renforcer la conclusion de l’étude : la possible interruption de la convection dans la Mer du Labrador. Résultat, le refroidissement dans l’Atlantique Nord serait plus probable que ne le suggèrent les modèles climatiques.


Les observations récentes du climat montrent que quelque chose d’étrange se passe déjà dans l’ l’Atlantique Nord. La région subpolaire au sud de la Groenland, y compris la Mer du Labrador, est quasiment la seule du monde à ne pas s’être réchauffée depuis le début du XX siècle. On parle du soi-disant « cold blob », caractérisant une région circonscrite de l’Atlantique Nord en contre-courant avec la tendance à l’augmentation des températures observée au niveau global.

Anomalies de températures en hiver 2013 et 2016 (par rapport à la période 1900-1950) : on voit une zone froide au sud du Groenland. Source : NASA GISS.
Anomalies de températures en hiver 2013 et 2016 (par rapport à la période 1900-1950) : on voit une zone froide au sud du Groenland. Source : NASA GISS.

Ce contraste serait l’une des manifestations de l’affaiblissement de l’AMOC, selon une étude parue fin mars 2015 (Nature Climate Change), signé par des chercheurs emmenés par Stefan Rahmstorf, du Potsdam Institute for Climate Research. 

Les scientifiques estimaient alors que le réchauffement climatique global dû aux émissions humaines de gaz à effet de serre avait déjà commencé à ralentir sérieusement la circulation thermohaline, de façon plus prononcée que dans les modèles climatiques. Cela serait la cause principale de l’apparition, dans les observations climatiques, d’un « cold blob » dans l’Atlantique du Nord. Or, compte tenu des résultats publiés dans Nature Communications par Sgubin et al., ce phénomène pourrait avoir une interprétation alternative : l’effet d’un changement de la convection dans la Mer du Labrador pourrait être aussi responsable d’un refroidissement local dans l’Atlantique du Nord.

Référence : Abrupt cooling over the North Atlantic in modern climate models, Giovanni Sgubin, Didier Swingedouw, Sybren Drijfhout, Yannick Mary & Amine Bennabi. Nature Communications, 15 février 2017. DOI: 10.1038/ncomms14375.